$S=1.08$
6069 reflections
272 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0448 P)^{2}\right.$
$+3.7698 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Extinction correction: SHELXTL95
Extinction coefficient: 0.0021 (4)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{W}-\mathrm{N} 1$	$1.973(4)$	$\mathrm{W}-\mathrm{C} 19$	$2.182(5)$
$\mathrm{W}-\mathrm{N} 2$	$2.013(4)$	$\mathrm{W}-\mathrm{Cl}$	$2.422(1)$
$\mathrm{W}-\mathrm{N} 3$	$1.741(4)$	$\mathrm{N} 3-\mathrm{Cl}$	$1.388(6)$
$\mathrm{N} 1-\mathrm{W}-\mathrm{N} 2$	$82.62(15)$	$\mathrm{N} 3-\mathrm{W}-\mathrm{N} 2$	$126.6(2)$
$\mathrm{N} 3-\mathrm{W}-\mathrm{C} 19$	$108.8(2)$	$\mathrm{N} 1-\mathrm{W}-\mathrm{Cl}$	$160.2(1)$
$\mathrm{N} 1-\mathrm{W}-\mathrm{C} 19$	$88.0(2)$	$\mathrm{N} 2-\mathrm{W}-\mathrm{Cl}$	$86.4(1)$
$\mathrm{N} 2-\mathrm{W}-\mathrm{C} 19$	$124.5(2)$	$\mathrm{C} 19-\mathrm{W}-\mathrm{Cl}$	$84.7(1)$
$\mathrm{N} 3-\mathrm{W}-\mathrm{Cl}$	$95.9(1)$	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{W}$	$165.1(4)$
$\mathrm{N} 3-\mathrm{W}-\mathrm{N} 1$	$103.9(2)$		

H atoms were placed in idealized positions and were refined riding on their parent atoms. $\mathrm{C}-\mathrm{H}$ distances of 0.96 and $0.97 \AA$ were used for methyl and secondary C atoms, respectively. A distance of $0.93 \AA$ was used for $s p^{2}-\mathrm{C}$ atoms. H -atom displacement parameters were $1.2 U_{\mathrm{eq}}\left(1.5 U_{\mathrm{eq}}\right.$ for methyl atoms) of the parent C atom. A hemisphere of frames, 0.3° in ω, were collected. The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability. The average e.s.d. for a $\mathrm{C}-\mathrm{C}$ bond was $0.007 \AA$.

Data collection: SMART (Siemens, 1995). Cell refinement: SMART and SAINT (Siemens, 1995). Data reduction: SHELXTL95 (Sheldrick, 1995). Program(s) used to solve structure: SHELXTL95. Program(s) used to refine structure: SHELXTL95. Molecular graphics: SHELXTL95. Software used to prepare material for publication: SHELXTL95.

KAA wishes to acknowledge the National Science Foundation for funding of the purchase of the X-ray equipment.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: BK1269). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

References

Boncella, J. M., Wang, S.-Y. S., VanderLende, D. D., Huff, R. L. \& Abboud, K. A. (1997). J. Organomet. Chem. In the press.
Feldman, J., Davis, W. M., Thomas, J. K. \& Schrock, R. R. (1990). Organometallics, 9, 2535-2548.
Fischer, J., Kress, J., Osborn, J. A., Ricard, L. \& Wesolek, M. (1987). Polyhedron, 6, 1839-1842.
Ivin, K. J. (1982). In Olefin Metathesis. New York: Academic Press. Jordan, R. F. (1991). Adv. Organomet. Chem. 32, 325-387.
Nugent, W. A. \& Mayer, J. M. (1988). In Metal-Ligand Multiple Bonds. New York: Wiley Interscience.
Sheldrick, G. M. (1995). SHELXTL95. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Area-Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sundermeyer, J., Weber, K. \& Pritzkow, H. (1993). Angew. Chem. Int. Ed. Engl. 32, 731-733.
VanderLende, D. D., Abboud, K. A. \& Boncella, J. M. (1994). Organometallics, 13, 3378-3380.

Acta Cryst. (1997). C53, 438-443

The Mercury(II) Trifluoroacetate-Bipyridyl System

Joan Halfpenny ${ }^{a}$ and Ronald W. H. Small ${ }^{b}$
${ }^{a}$ Department of Chemistry and Physics, Nottingham Trent University, Clifton Road, Nottingham NG11 8NS, England, and ${ }^{b}$ Chemistry Department, The University, Lancaster
LA1 4YA, England. E-mail: r.small@ lancaster.ac.uk
(Received 7 June 1996; accepted 3 December 1996)

Abstract

Three complexes of mercury(II) trifluoroacetate and $2,2^{\prime}$-bipyridyl, of different stoichiometry, have been investigated and their structures compared with the previously published structure of bis [$2,2^{\prime}$-bipyridyl$\left.N, N^{\prime}\right)$ bis(trifluoroacetato- O)mercury(II) $],\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{2}$ (BHG). The complete series, AHG $\left\{\left(2,2^{\prime}-\right.\right.$ bipyridyl- N, N^{\prime})(trifluoroacetato- O) mercury (II) hemi-[tetrakis(trifluoroacetato-O) mercury(II)], $\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)\right.$ $\left.\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{4}\right]_{0.5}\right\}, \quad \mathrm{BHG}, \quad \mathrm{GHG}\{$ bis($2,2^{\prime}$-bipyridyl- N, N^{\prime}) (trifluoroacetato- O) mercury(II) (2,2'-bipyridyl- N, N^{\prime})tris(trifluoroacetato- O) mercury(II), $\left.\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]\right\}$, and DHG \{bis(2,2'-bipyridyl- N, N^{\prime})mercury(II) bis(trifluoroacetate), $\left.\left[\mathrm{Hg}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{2}\right\}$, shows the progressive replacement of trifluoroacetate by bidentate $2,2^{\prime}$-bipyridyl. Within the series, mercury may be coordinated to zero, one or two bidentate bipyridyl groups. In the extreme case, i.e. DHG, the complex ion $\left.[\mathrm{Hg} \text { (bipyridyl) })_{2}\right]^{2+}$ is formed with exclusion of trifluoroacetate from the mercury coordination.

Comment

On account of the ease with which the trifluoroacetyl group may be replaced, mercury(II) trifluoroacetate (HGTFA) has proved to be a valuable reagent in the study of the stereochemical configuration around mercury particularly by N -donor and certain O -donor ligands.

HGTFA
The structures of the products of the complexation of HGTFA with monodentate N -donors, e.g. bis(pyridine) (Halfpenny, Small \& Thorpe, 1978), tris(pyridine) (Halfpenny \& Small, 1978, 1995), a bidentate N-donor, 4-benzyl-1,7-diphenyl-2,4,6-triazahepta-2,5-diene (Breuer \& Small, 1995), a bi- and tridentate N -donor, 2,4,6-tri(2-
pyridyl)-1,3,5-triazine (Halfpenny \& Small, 1982), and the O-donor ligands 1,4-dioxane (Small, 1982) and pyridine N -oxide (Halfpenny \& Small, 1991), indicate that N -donors are more effective than O -donor ligands in displacing trifluoroacetate groups from the primary sphere of coordination around mercury. This is particularly the case with bidentate ligands such as $2,2^{\prime}$-bipyridyl (BP).

BP

The structure of BHG , the equimolar complex of HGTFA and bipyridyl, has already been described (Halfpenny, 1982). BHG is formed from an equimolar solution of both components in dichloromethane. It was found that by varying the composition of this solution, compounds with four different stoichiometries could be crystallized (see Table 1). The four compounds are: AHG $\left\{(\mathrm{HGTFA})_{1.5}(\mathrm{BP}),\left(2,2^{\prime}\right.\right.$-bipyridyl)(trifluoroacetato)mercury(II) hemi[tetrakis(trifluoroacetato)mercury(II) $]\}$, BHG $\left\{(\mathrm{HGTFA})_{2}(\mathrm{BP})_{2}\right.$, bis[(2, 2'-bipyridyl)bis(trifluoroacetato)mercury(II)]\}, GHG \{(HGTFA $)_{2}(\mathrm{BP})_{3}$, bis(2,2'-bipyridyl)(trifluoroacetato)mercury(II) ($2,2^{\prime}$-bipyridyl)tris(trifluoroacetato)mercury(II) \} and DHG $\left\{(\mathrm{HGTFA})(\mathrm{BP})_{2}\right.$, bis(2, 2^{\prime}-bipyridyl)mercury(II) bis(trifluoroacetate) $\}$. These formulations are based on the the crystal structure determinations reported here; elemental analyses are unreliable in the presence of mercury and fluorine. A preliminary report, without details, of the structures of these compounds (Halfpenny \& Small, 1981) is superseded by the present account of the structures of AHG, GHG and DHG, and that of Halfpenny (1982) on BHG.

The structures of AHG, GHG and DHG are shown in Figs 1, 3 and 4, respectively. For ease of comparison, the structure of BHG is also reproduced in Fig. 2. Principal bond distances and angles are given in Tables 2, 3 and 4. The structures illustrate the irregular and diverse features of mercury stereochemistry. As in the case of BHG, AHG and GHG both contain two structurally distinct mercury centres, but DHG contains only one. In all, within the four compounds, there are seven unique mercury coordination schemes. In two of these, two bipyridyl ligands bond to one Hg atom, in four cases, a Hg atom is bound to one bipyridyl ligand, and in one case, the Hg atom forms no bond to a bipyridyl ligand. The bipyridyl molecules are always coordinated to mercury in a regular bidentate manner, with bite angles in the range $70.8-73.0^{\circ}$, the largest deviation of the Hg atom from the mean bipyridyl plane being 0.19 (6) A. The $\mathrm{Hg}-\mathrm{N}$ distances fall within the range 2.18-2.39 \AA, which is typical for N-donor complexes of mercury. In GHG and DHG, where two bipyridyl ligands bond to one Hg atom, the angles between the two bipyridyl mean planes are similar with values of $39.8(5)$ and $38.2(6)^{\circ}$, respectively. Coordination around the Hg atom is completed by an O atom of trifluoroacetate (TFA) groups. In compounds of this type, $\mathrm{Hg}-\mathrm{O}$ bond distances have been found to range from the covalent bonding value ($2.0-2.2 \AA$) up to the van der Waals contact distance (around 3.1 A). The $\mathrm{Hg}-\mathrm{O}$ ionic separation has been estimated as $2.54 \AA$ (Halfpenny \& Small, 1978), but distances lying between this value and $3.1 \AA$ frequently occur; they are likely to be weakly electrostatic in character. In the three present compounds (and BHG), $\mathrm{Hg}-\mathrm{O}$ bonds having these characteristics are encountered; it is useful to consider them in relation to the number of bipyridyl molecules bonded to the relevant Hg atom. In AHG, the Hg 1 atom lies on a symmetry centre and forms no bonds to bipyridyl, only to two centrosymmetrically related pairs of TFA groups. The $\mathrm{Hg} 1-\mathrm{O} 3$ bond may be identified as covalent from its length. The other TFA group which is bidentate has almost equal $\mathrm{Hg}-\mathrm{O}$ distances; the bonds could be ionic or covalent involving the two resonant possibilities. Overall, the Hg 1 atom is at the centre of a complex $\left[\mathrm{Hg}(\mathrm{TFA})_{4}\right]^{2-}$ ion and is shielded from further interactions.

A similar ion has been reported in bis(4-benzyl-1,7-di-phenyl-2,4,6-triazahepta-2,5-diene)mercury(II) tetrakis(trifluoroacetato)mercury(II) dichloromethane solvate (Breuer \& Small, 1995). The counterion in AHG (with
an overall charge of +1) is the Hg 2 atom covalently bound to one bipyridyl and one TFA ligand. These groups do not completely shield the Hg 2 atom which interacts with the outer O atom of the anion as seen in the close approach of Hg 2 to the $\mathrm{O} 4, \mathrm{O} 6$ and $\mathrm{O}^{\prime \prime}$ atoms. The structure, bound through the sequence -O2$\mathrm{Hg} 2-\mathrm{O} 1-\mathrm{O} 2-\mathrm{Hg} 2-$, is thus weakly polymeric. In BHG, the two Hg atoms are each bound differently to one bipyridyl and two TFA ligands covalently, and are thus almost neutral; incomplete shielding allows very weak polymeric bonding involving both Hg atoms. There are two quite differently coordinated Hg atoms in GHG. The Hg 1 atom bonds to one bipyridyl and to three

Fig. 1. View of AHG showing the unit cell and one unit of structure plus the centrosymmetric moiety around the special position (Hgl). Displacement ellipsoids of the Hg atom are shown at 50% probability levels, while those of the F atoms are shown at 10% probability levels. The F1 and F6 atoms, as well as all other atoms, are isotropic.

Fig. 2. View of BHG, reproduced from Halfpenny (1982), for comparison.

TFA groups. To one of these TFA groups, the Hgl O3 bond has the typical covalent distance. A second TFA group has a slightly longer but nevertheless covalent bond, $\mathrm{Hg} 1-\mathrm{Ol}$, the lengthening being compensated for by a shortening of $\mathrm{Hg} 1-\mathrm{O} 2$ to less than the van der Waals value. The third TFA group involves unequal bidentate bonding that is possibly ionic. Overall, this moiety centred around the Hg 1 atom will bear a charge of about -1 . The Hg 2 atom is closely coordinated by two bipyridyl groups which hinder further close approaches, the nearest being a TFA group, with $\mathrm{Hg}-\mathrm{O}$ distances of 2.69 (1) and 2.86 (2) \AA, which can only be ionic. The charge on the moiety around the Hg 2 atom is thus +1 . A further weak interaction links the Hg 2 atom to the O 4 atom of the anion.

DHG has the simplest structure with mercury closely coordinated by two bipyridyl ligands. The two TFA groups are quite distant from the Hg atom, but must necessarily be ionically bound to them, although the $\mathrm{Hg}-\mathrm{O}$ distances are in excess of the estimated ionic value; in effect, the coordination of the two bipyridyl ligands increases the ionic radius of Hg^{2+} by forming a complex ion.

Fig. 3. View of GHG showing the unit cell and one unit of structure. Displacement ellipsoids of the Hg atom are shown at 50% probability levels, while those of the F atoms are shown at 10% probability levels. The F3, F5 and F6 atoms, as well as all other atoms, are isotropic.

Fig. 4. View of DHG showing the unit cell and one unit of structure. The displacement ellipsoid of the Hg atom is shown at the 50% probability level. All other atoms are isotropic.

Experimental

AHG, GHG and DHG were crystallized from dichloromethane. Table 1 shows the composition of the products obtained from four different solutions.

Table 1. Composition of the products (mole fraction HGTFA)

	AHG	BHG	GHG	DHG
Crystals	0.600	0.500	0.400	0.333
Solution	0.667	0.500	0.400	0.333

AHG

Crystal data

$\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]-$
$\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{4}\right]_{0.5}$
$M_{r}=796.1$
Triclinic
P1
$a=11.72(1) \AA$
$b=9.57$ (1) \AA
$c=10.69(1) \AA$
$\alpha=100.42(10)^{\circ}$
$\beta=110.81(10)^{\circ}$
$\gamma=103.55(10)^{\circ}$
$V=1042.6(10) \AA^{3}$
$Z=2$
$D_{x}=2.536 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=2.567 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Data collection

Stoe Stadi-2 diffractometer
Variable ω scan; $2 \theta^{\prime}$ fixed
Absorption correction:
integration (SHELX76;
Sheldrick, 1976)
$T_{\text {min }}=0.237, T_{\text {max }}=0.458$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 20 reflections
$\theta=5-20^{\circ}$
$\mu=10.73 \mathrm{~mm}^{-1}$
$T=288 \mathrm{~K}$
Acicular along a
$0.420 \times 0.134 \times 0.084 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=21^{\circ}$
$h=0 \rightarrow 11$
$k=-9 \rightarrow 9$
$l=-10 \rightarrow 10$
1 standard reflection per layer

2135 measured reflections 1987 independent reflections 1661 reflections with

$$
I>3 \sigma(I)
$$

$R_{\text {int }}=0.016$

Refinement

Refinement on F
$R=0.046$
$w R=0.050$
$S=2.375$
1661 reflections 204 parameters
H atoms not refined; see below
$w=1 /\left[\sigma^{2}(F)+0.000381 F^{2}\right]$
every 20 reflections intensity decay: maximum 5%, corrected by interpolation

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for $A H G$

$\mathrm{Hg} 1-\mathrm{O} 3$	2.277 (13)	$\mathrm{Hg} 2-\mathrm{O} 1$	2.089 (13)
$\mathrm{Hgl}-\mathrm{O} 4$	2.795 (13)	$\mathrm{Hg} 2-\mathrm{O} 2$	3.029 (14)
$\mathrm{Hgl}-\mathrm{O}$	2.499 (15)	$\mathrm{Hg} 2-\mathrm{O}^{\prime}$	2.774 (14)
$\mathrm{Hgl}-\mathrm{O} 6$	2.542 (13)	$\mathrm{Hg} 2-\mathrm{O} 4$	2.631 (12)
$\mathrm{Hg} 2-\mathrm{N} 1$	2.178 (14)	$\mathrm{Hg} 2-\mathrm{O} 6$	2.654 (14)
$\mathrm{Hg} 2-\mathrm{N} 2$	2.331 (15)		
$\mathrm{O} 3-\mathrm{Hg} 1-\mathrm{O} 4$	50.6 (4)	$\mathrm{N} 1-\mathrm{Hg} 2-\mathrm{O} 4$	99.8 (4)
$\mathrm{O} 3-\mathrm{Hgl}-\mathrm{O5}$	93.3 (5)	$\mathrm{N} 1-\mathrm{Hg} 2-\mathrm{O} 6$	82.9 (5)
$\mathrm{O} 3-\mathrm{Hgl}-\mathrm{O6}$	98.6 (4)	$\mathrm{N} 1-\mathrm{Hg} 2-\mathrm{O} 2{ }^{\text {i }}$	85.4 (5)
$\mathrm{O} 3-\mathrm{Hg}-\mathrm{O4}^{\text {ii }}$	129.4 (4)	$\mathrm{N} 2-\mathrm{Hg} 2-\mathrm{O} 1$	127.0 (6)
$\mathrm{O} 3-\mathrm{Hgl}-\mathrm{O}^{\text {ii }}$	86.7 (4)	$\mathrm{N} 2-\mathrm{Hg} 2-\mathrm{O} 4$	87.4 (4)
$\mathrm{O} 3-\mathrm{Hgl}-\mathrm{Ob}^{\text {ii }}$	81.4 (4)	$\mathrm{N} 2-\mathrm{Hg} 2-\mathrm{O} 6$	145.4 (4)
$\mathrm{O} 4-\mathrm{Hgl}-\mathrm{O} 5$	106.5 (4)	$\mathrm{N} 2-\mathrm{Hg} 2-\mathrm{O} 2^{\text {i }}$	89.6 (4)
$\mathrm{O} 4-\mathrm{Hgl}-\mathrm{O} 6$	71.8 (4)	$\mathrm{Ol}-\mathrm{Hg} 2-\mathrm{O} 4$	79.4 (5)
O4- $\mathrm{Hgl}-\mathrm{O}^{\text {ii }}$	73.5 (5)	$\mathrm{O} 1-\mathrm{Hg} 2-\mathrm{O} 6$	77.6 (5)
$\mathrm{O} 4-\mathrm{Hgl}-\mathrm{O6}^{\text {ii }}$	108.2 (4)	$\mathrm{O} 1-\mathrm{Hg} 2-\mathrm{O} 2{ }^{\text {i }}$	97.4 (5)
$\mathrm{O} 5-\mathrm{Hgl}-\mathrm{O} 6$	50.8 (5)	$\mathrm{O} 4-\mathrm{Hg} 2-\mathrm{O6}$	72.8 (4)
$\mathrm{O} 5-\mathrm{Hgl}-\mathrm{O}^{\text {ii }}$	129.2 (5)	$\mathrm{O} 4-\mathrm{Hg} 2-\mathrm{O} 2{ }^{\text {i }}$	172.9 (6)
$\mathrm{N} 1-\mathrm{Hg} 2-\mathrm{N} 2$	72.8 (6)	$\mathrm{O} 6-\mathrm{Hg} 2-\mathrm{O}^{\text {i }}$	112.8 (6)
$\mathrm{N} 1-\mathrm{Hg} 2-\mathrm{O} 1$	159.8 (6)		

GHG

Crystal data

$\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]-$
$\left[\mathrm{Hg}\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{3}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=1321.8$
Triclinic
$P \overline{1}$
$a=12.78$ (1) \AA
$b=16.06$ (2) \AA
$c=10.58(1) \AA$
$\alpha=86.46(9)^{\circ}$
$\beta=90.18$ (9) ${ }^{\circ}$
$\gamma=80.29(8)^{\circ}$
$V=2136.1(16) \AA^{3}$
$Z=2$
$D_{x}=2.055 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=2.099 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Data collection

Stoe Stadi-2 diffractometer
Variable ω scan; $2 \theta^{\prime}$ fixed
Absorption correction:
integration (SHELX76;
Sheldrick, 1976)
$T_{\text {min }}=0.364, T_{\text {max }}=0.516$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 20
reflections
$\theta=5-20^{\circ}$
$\mu=7.00 \mathrm{~mm}^{-1}$
$T=288 \mathrm{~K}$
Triclinic prism
$0.50 \times 0.18 \times 0.10 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=20^{\circ}$
$h=0 \rightarrow 11$
$k=-15 \rightarrow 15$
$l=-10 \rightarrow 10$
1 standard reflection per layer
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=1.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.48 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV) and Cromer \& Mann $(1968)(\mathrm{Hg})$

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-x,-y,-z$.

[^0]4013 measured reflections
3796 independent reflections 2902 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.027$

Refinement

Refinement on F
$R=0.049$
$w R=0.053$
$S=2.227$
2902 reflections
336 parameters (2 blocks)
H atoms not refined; see
below
$w=1 /\left[\sigma^{2}(F)+0.000444 F^{2}\right]$
ant
,
every 20 reflections intensity decay: maximum 5%, corrected by interpolation

$(\Delta / \sigma)_{\text {max }}=0.018$
$\Delta \rho_{\text {max }}=1.11 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.87 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV) and Cromer \& Mann $(1968)(\mathrm{Hg})$

Table 3. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for $G H G$

$\mathrm{Hgl}-\mathrm{N} 1$	2.318 (15)	$\mathrm{Hgl}-\mathrm{O} 6$	2.766 (12)
$\mathrm{Hg} 1-\mathrm{N} 2$	2.391 (12)	$\mathrm{Hg} 2-\mathrm{N} 3$	2.305 (13)
$\mathrm{Hg1}-\mathrm{Ol}$	2.355 (16)	$\mathrm{Hg} 2-\mathrm{N} 4$	2.250 (15)
$\mathrm{Hg1}-\mathrm{O} 2$	2.862 (16)	$\mathrm{Hg} 2-\mathrm{N} 5$	2.309 (14)
$\mathrm{Hg}-\mathrm{O} 3$	2.246 (13)	$\mathrm{Hg} 2-\mathrm{N} 6$	2.273 (13)
$\mathrm{Hgl}-\mathrm{O} 4$	3.156 (15)	$\mathrm{Hg} 2-07$	2.848 (14)
$\mathrm{Hgl}-\mathrm{OS}$	2.572 (14)	$\mathrm{Hg} 2-\mathrm{O} 8$	2.687 (13)
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{N} 2$	70.8 (5)	$\mathrm{O} 3-\mathrm{Hg} 1-\mathrm{OS}$	85.2 (5)
$\mathrm{N} 1-\mathrm{Hgl}-\mathrm{Ol}$	97.9 (6)	$\mathrm{O} 3-\mathrm{Hg}-\mathrm{O} 6$	78.6 (4)
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{O} 2$	81.9 (5)	$\mathrm{O} 5-\mathrm{Hg} 1-\mathrm{O} 6$	48.8 (4)
$\mathrm{N} 1-\mathrm{Hg} 1-\mathrm{O} 3$	160.7 (4)	$\mathrm{N} 3-\mathrm{Hg} 2-\mathrm{N} 4$	73.0 (5)
$\mathrm{N} 1-\mathrm{Hg1}-\mathrm{O} 5$	86.6 (5)	$\mathrm{N} 3-\mathrm{Hg} 2-\mathrm{N} 5$	106.3 (5)
$\mathrm{N} 1-\mathrm{Hgl}-\mathrm{O} 6$	82.8 (4)	N3-Hg2-N6	150.2 (5)
$\mathrm{N} 2-\mathrm{Hgl}-\mathrm{Ol}$	135.2 (5)	$\mathrm{N} 3-\mathrm{Hg} 2-\mathrm{O} 7$	72.6 (4)
$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{O} 2$	87.7 (4)	$\mathrm{N} 3-\mathrm{Hg} 2-\mathrm{O} 8$	117.3 (4)
$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{O} 3$	104.5 (4)	$\mathrm{N} 4-\mathrm{Hg} 2-\mathrm{N} 5$	161.0 (5)
$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{O} 5$	137.8 (4)	$\mathrm{N} 4-\mathrm{Hg} 2-\mathrm{N} 6$	118.1 (5)
$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{O} 6$	92.2 (4)	$\mathrm{N} 4-\mathrm{Hg} 2-\mathrm{O} 7$	80.8 (5)
$\mathrm{O} 1-\mathrm{Hg} 1-\mathrm{O} 2$	47.5 (6)	$\mathrm{N} 4-\mathrm{Hg} 2-\mathrm{O} 8$	81.6 (5)
$\mathrm{Ol}-\mathrm{Hgl}-\mathrm{O} 3$	98.1 (5)	$\mathrm{N} 5-\mathrm{Hg} 2-\mathrm{N} 6$	72.3 (5)
$\mathrm{O} 1-\mathrm{Hgl}-\mathrm{O} 5$	81.6 (5)	N5-Hg2-07	81.0 (5)
$\mathrm{Ol}-\mathrm{Hgl}-\mathrm{O}^{6}$	130.4 (5)	$\mathrm{N} 5-\mathrm{Hg} 2-\mathrm{O} 8$	82.2 (5)
$\mathrm{O} 2-\mathrm{Hg} 1-\mathrm{O} 3$	117.0 (5)	N6-Hg2-07	134.2 (4)
$\mathrm{O} 2-\mathrm{Hg} 1-\mathrm{O} 5$	124.8 (5)	$\mathrm{N} 6-\mathrm{Hg} 2-\mathrm{O} 8$	92.3 (4)
$\mathrm{O} 2-\mathrm{Hg} 1-\mathrm{O} 6$	163.8 (5)	O7-Hg2-08	47.0 (4)

DHG

Crystal data

$\left[\mathrm{Hg}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right)_{2}$
$M_{r}=739.0$
Triclinic
$P \overline{1}$
$a=16.54$ (2) \AA
$b=11.06$ (1) \AA
$c=7.59$ (1) \AA
$\alpha=98.6(10)^{\circ}$
$\beta=87.7$ (9) ${ }^{\circ}$
$\gamma=67.2(7)^{\circ}$
$V=1258.2(10) \AA^{3}$
$Z=2$
$D_{x}=1.950 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.979 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Data collection

Stoe Stadi-2 diffractometer
Variable ω scan; $2 \theta^{\prime}$ fixed
Absorption correction:
integration (SHELX76;
Sheldrick, 1976)
$T_{\text {min }}=0.425, T_{\text {max }}=0.657$
2456 measured reflections
2214 independent reflections
1950 reflections with
$I>3 \sigma(I)$
$R_{\text {int }}=0.014$

Refinement

Refinement on F
$R=0.052$
$w R=0.057$
$S=2.267$

1950 reflections

200 parameters
H atoms not refined; see below
$w=1 /\left[\sigma^{2}(F)+0.000623 F^{2}\right]$
$\theta_{\text {max }}=21.0^{\circ}$
$h=-15 \rightarrow 15$
$k=-10 \rightarrow 10$
$l=0 \rightarrow 7$
1 standard reflection per layer
every 20 reflections
intensity decay: maximum 5%, corrected by interpolation

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.018 \\
& \Delta \rho_{\max }=1.78 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.02 \AA^{-3}
\end{aligned}
$$

Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV) and Cromer \& Mann $(1968)(\mathrm{Hg})$

Table 4. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for $D H G$

$\mathrm{Hg}-\mathrm{N} 1$	$2.297(13)$	$\mathrm{Hg}-\mathrm{O} 1$	$2.977(12)$
$\mathrm{Hg}-\mathrm{N} 2$	$2.327(12)$	$\mathrm{Hg}-\mathrm{O} 2$	$2.680(12)$
$\mathrm{Hg}-\mathrm{N} 3$	$2.282(12)$	$\mathrm{Hg}-\mathrm{O} 3$	$2.894(12)$
$\mathrm{Hg}-\mathrm{N} 4$	$2.330(13)$	$\mathrm{Hg}-\mathrm{O} 4$	$2.987(15)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 2$	$71.7(4)$	$\mathrm{N} 3-\mathrm{Hg}-\mathrm{Ol}$	$81.2(4)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 3$	$119.8(4)$	$\mathrm{N} 3-\mathrm{Hg}-\mathrm{O} 2$	$81.3(4)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{N} 4$	$154.1(4)$	$\mathrm{N} 3-\mathrm{Hg}-\mathrm{O} 3$	$80.8(4)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{O} 1$	$116.7(4)$	$\mathrm{N} 3-\mathrm{Hg}-\mathrm{O4}$	$121.2(4)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{O} 2$	$77.0(4)$	$\mathrm{N} 4-\mathrm{Hg}-\mathrm{Ol}$	$86.8(4)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{O} 3$	$84.8(4)$	$\mathrm{N} 4-\mathrm{Hg}-\mathrm{O} 2$	$128.9(4)$
$\mathrm{N} 1-\mathrm{Hg}-\mathrm{O} 4$	$80.4(4)$	$\mathrm{N} 4-\mathrm{Hg}-\mathrm{O} 3$	$74.1(4)$
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{N} 3$	$157.7(4)$	$\mathrm{N} 4-\mathrm{Hg}-\mathrm{O} 4$	$74.0(4)$
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{N} 4$	$106.1(4)$	$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 2$	$45.7(3)$
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{O} 1$	$76.6(4)$	$\mathrm{O} 1-\mathrm{Hg}-\mathrm{O} 3$	$157.0(4)$
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{O} 2$	$83.4(4)$	$\mathrm{O} 2-\mathrm{Hg}-\mathrm{O} 4$	$142.2(4)$
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{O} 3$	$120.6(4)$	$\mathrm{O} 2-\mathrm{Hg}-\mathrm{O} 3$	$143.4(4)$
$\mathrm{N} 2-\mathrm{Hg}-\mathrm{O} 4$	$77.9(4)$	$\mathrm{O} 2-\mathrm{Hg}-\mathrm{O} 4$	$154.3(4)$
$\mathrm{N} 3-\mathrm{Hg}-\mathrm{N} 4$	$72.0(4)$	$\mathrm{O} 3-\mathrm{Hg}-\mathrm{O} 4$	$44.1(4)$

Although HGTFA is hygroscopic and unstable in air, the bipyridyl compounds were found to be quite stable. For the compounds AHG, GHG and DHG, intensity data were collected on a two-circle diffractometer employing equiinclination Weissenberg geometry. A uniform procedure was adopted for all three compounds as described below. The angle θ^{\prime} referred to is the projection of θ onto the equatorial plane. The crystal was set with the axis indicated accurately aligned along the diffractometer ω axis. A separate standard is required for each reciprocal lattice layer measured; interlayer scale factors were refined and then fixed at a later stage of the structure refinement. Hg -atom positions were obtained from Patterson maps. Other non-H atoms were located from the ΔF map and included in the refinements. C, N and O atoms were treated isotropically. Anisotropic $U^{i j}$ values of all F atoms were also included and found to be large in magnitude; this is a common feature of structures involving the trifluoroacetate group and has been the subject of an investigation elsewhere (Gleghorn \& Small, 1995). H atoms were included at calculated positions ($\mathrm{C}-\mathrm{H} 1.08 \AA$) but not refined. The most prominent features on the final ΔF maps were in the
near vicinity of the Hg atoms; these were attributed to series termination errors arising from incomplete data sets in respect of high-angle scattering by mercury or deficiencies in the calculated absorption factors.
For all compounds, data reduction: DATR (Small, 1977); program(s) used to solve structures: SHELX76 (Patterson) (Sheldrick, 1976); program(s) used to refine structures: SHELX76; molecular graphics: SNOOPI (Davies, 1983)

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: LI1151). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Breuer, S. W. \& Small, R. W. H. (1995). Acta Cryst. C51, 1784-1788.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Davies, K. (1983). SNOOPI. Program for Drawing Crystal and Molecular Diagrams. University of Oxford, England.
Gleghorn, J. T. \& Small, R. W. H. (1995). Acta Cryst. B51, 346-353. Halfpenny, J. (1982). Acta Cryst. B38, 2049-2051.
Halfpenny, J. \& Small, R. W. H. (1978). Acta Cryst. B34, 3758-3760.
Halfpenny, J. \& Small, R. W. H. (1981). Acta Cryst. A37, C-226.
Halfpenny, J. \& Small, R. W. H. (1982). Acta Cryst. B38, 939-942.
Halfpenny, J. \& Small, R. W. H. (1991). Acta Cryst. C47, 869-870.
Halfpenny, J. \& Small, R. W. H. (1995). Acta Cryst. C51, 1028.
Halfpenny, J., Small, R. W. H. \& Thorpe, F. G. (1978). Acta Cryst. B34, 3075-3077.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Small, R. W. H. (1977). DATR. Program for Reducing Raw Stadi-2 Data to Intensities. University of Lancaster, England.
Small, R. W. H. (1982). Acta Cryst. B38, 2886-2887.

Acta Cryst. (1997). C53, 443-445

Structural Investigation of $\mathrm{Ni}^{\text {II }}$ Complexes. XI. Dichlorobis(4-methylpiperidine-N)(4-methylpyridine-N)nickel(II)

Marian Koman, Eugen Jóna and Igor Kopál
Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia.
E-mail: koman@cvtstu.cvt.stuba.sk

(Received 28 February 1996; accepted 15 October 1996)

Abstract

Molecules of the title compound, $\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)\right.$ $\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{~N}\right)_{2}$], lie on crystallographic twofold axes which pass through each Ni atom and 4-methylpyridine ligand. The coordination polyhedron around the $\mathrm{Ni}^{\mathrm{II}}$ centre is

distorted trigonal bipyramidal with an $\mathrm{N}_{3} \mathrm{Cl}_{2}$ coordination sphere; the equatorial plane is formed by two chloride ions and the N atom of the 4-methylpyridine ligand, while the axial positions are occupied by the N atoms of the 4 -methylpiperidine groups.

Comment

The stoichiometry and stereochemistry of $\mathrm{Ni}^{\mathrm{II}}$ complexes with various piperidine ligands have been studied. The title compound, $\left[\mathrm{NiCl}_{2} \text { (4-Mepip) }\right)_{2}$ (4-Mepy)], (I), where 4-Mepip is 4-methylpiperidine and 4-Mepy is 4 -methylpyridine, was prepared from the $\mathrm{NiCl}_{2} / 4$ Mepip system. The 4-Mepy moiety was formed in the reaction mixture by dehydrogenation (Koman, Ďurčanská, Jóna \& Ondrejovič, 1991).

(I)

Spectroscopic and magnetic measurements were consistent with the presence of pentacoordination about the $\mathrm{Ni}^{\mathrm{II}}$ atom, but could not distinguish between square-pyramidal and trigonal-bipyramidal coordination (Koman, Jóna \& Ďurčanská, 1986). Our results show that the coordination polyhedron around the $\mathrm{Ni}^{\mathrm{II}}$ atom is intermediate between trigonal bipyramidal and square pyramidal (Addison, Rao, Reedijk, Rijn \& Verschoor, 1984). Molecules of (I) lie on crystallographic twofold axes (Fig. 1). In the trigonal-bipyramidal complex, the equatorial plane is formed by the $\mathrm{N} 2, \mathrm{Cl}$ and Cl^{i} atoms [symmetry code: (i) $-x, y, \frac{1}{2}-z$] and the axial ligands are 4-Mepip. In the square-pyramidal complex, two 4-Mepip ligands and two chloride ions define the basal plane, with the apical site occupied by an 4-Mepy ligand. The $\mathrm{Ni}^{\mathrm{II}}$ ion lies 0.578 (1) \AA from this mean basal plane defined by the $\mathrm{Cl}, \mathrm{Cl}^{\mathrm{i}}, \mathrm{N} 1$ and $\mathrm{N} 1^{\mathrm{i}}$ atoms, in the direction of the N 2 atom.

The interatomic distances in the coordination polyhedron of the title complex are in agreement with average interatomic distances in pentacoordinate complexes of nickel(II) with neutral N -donor and chloride ligands (Melník, Šramko, Dunaj-Jurčo, Sirota \& Holloway, 1994). Comparison of the $\mathrm{Ni}-\mathrm{N}$ interatomic distances with those in the complexes $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(3,5-\mathrm{diMepip})_{3}\right]$ (Koman, Jóna \& Durčanská, 1992), $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(\mathrm{py})_{4}\right]$ (Valach, Sivý \& Koreň, 1984), [Ni(NCS) $\left.{ }_{2}(\text { pip })_{4}\right]$ (Koman, Handlovič, Ďurčanská \& Gažo, 1983) and $\left[\mathrm{Ni}(\mathrm{NCS})_{2}(\mathrm{pip})_{2}(\mathrm{py})\left(\mathrm{H}_{2} \mathrm{O}\right)\right] .2$ pip (Koman, Ďurčanská, Handlovič \& Gažo, 1983) shows that those involving non-aromatic heterocyclic ligands are somewhat longer than those to aromatic ligands.

[^0]: Colour

